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We consider the simple idea of coupling a quantum system to a dissipative classical one through
well-defined quantities of the former. The dynamical evolution is described via Ehrenfest’s theorem.
This model is able to mimic a dissipative temporal evolution, without violation of any quantal rule.

PACS number(s): 05.45.+b, 03.65.Sq, 03.65.Ca, 05.30.—d

I. INTRODUCTION

Sustained effort has over the years been devoted to
the goal of trying to understand quantum models by re-
course to systems described by a few classical variables
[1]. These systems can be motivated, in the Z — 0 limit,
either by the effective potential approaches [2,3] or by
semiclassical treatments (WKB, for instance). In this
vein, systems characterized by the coexistence of both
classical and quantum degrees of freedom have been re-
cently employed. For example, Bonilla and Guinea have
in such a fashion described measurement processes [4]
and Pattanayak and Schieve have studied quantum chaos
by recourse to an appropriate, effective classical Hamil-
tonian [5].

The interplay between quantal and classical variables
has acquired special relevance in connection with the con-
cept of quantum friction. Different attempts to quantify
dissipative forces have received renewed attention, as ex-
perimental evidence has been accumulating with regard
to the presence of dissipation phenomena in several mi-
croscopic processes [7]. In spite of the fact that several
techniques have been employed, a unanimously accepted
prescription for quantifying dissipating systems has not
yet been devised. There are two major approaches for
the quantum mechanical handling, as a one-body prob-
lem [1,8-13], of the damped motion of a particle: (a) the
historical, Kanai [8] method, in which an explicitly time-
dependent Hamiltonian is used, and (b) introducing a
“friction” potential, which relies upon specially selected
expectation values [8,9]. The main criticisms that have
been made with respect to these two kinds of Hamilto-
nians allude to the fact that there exists an apparent
violation of Heisenberg’s uncertainty principle and that,
additionally, the proposed Hamiltonians do not coincide
in general with the energy operator [11,14,15].

It is of importance to point out that one faces an easily
solvable set of equations for the description of the time
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evolution of expectation values of, say, ¢ operators in
which one may be interested, if these operators close a
partial Lie algebra with respect to the Hamiltonian H of
the system, i.e., if we have a set of relations of the type

[H(t),0:]1 =ik g;i(t)0;, i=1,2,...,q, (1.1)

i=1
where the g;; are the elements of a ¢ x ¢ matrix G. If
such is the case we obtain, from the generalized Ehrenfest
theorem,

d_ii‘?t_)__q O:), i=12...,q, (12)
a linear set of first-order differential equations
d(Oz> Zgn(mo ), i=1,2,...,q, (1.3)

for the temporal evolution of the expectation values.
Many instances of physical interest are encompassed
within these particular circumstances [16,17].

In this paper we shall study the interaction between
a quantum system and a classical one and assume that
the classical degrees of freedom obey the (deterministic)
equations of motion usually employed in describing clas-
sical friction. The resulting type of interaction, as we
show below, is able to mimic a dissipative quantum be-
havior without violating any quantum rules. The paper
is organized as follows. In Sec. II we present the model.
Sec. IIl is devoted to illustrative examples. Finally, some
conclusions are drawn in Sec. IV.

II. MODEL

‘We consider the interaction between a quantum system
and a classical one described by a Hamiltonian of the
form

H=H,+Hq+HS, (2.1)

where ﬁq and H stand for quantal and classical Hamil-
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tonians, respectively, and H 4 is an interaction potential.
Our main goal is that of describing dissipative behavior
while avoiding any violation of the Heisenberg principle.
Previously proposed Hamiltonians do not coincide with
the energy operator [8,10,14,15]. This is not the case
here.

The dynamical equations for the quantal (relevant)
variables are the canonical ones [Egs. (1.2)], which in
turn will also depend on the classical ones through the
gji elements of the matrix G of Egs. (1.3). Our cen-
tral idea is that of assigning to the classical variables
that type of evolution prescribed by the classical treat-
ment of dissipative systems [18]. The energy is taken
here to coincide with the quantum expectation value of
the Hamiltonian (2.1) and in turn generates the temporal
evolution of all the classical variables in the frictionless
case. Consequently, the classical equations of motion to
be used here are well-defined ones. If we take the classi-
cal variables to be a position s and a momentum p,, we
set

ds _ 3(H)

E = aps 3 (228.)
dp, [ 9(H)

=" (—as + nps>- (2.2b)

The parameter n > 0 is a dissipative one and plays a
prominent role in the present considerations. Of course,
the second term on the right-hand-side of (2.2b) appears
in the ad hoc fashion usually employed in describing clas-
sical friction [18]. Through this parameter 5, the classical
variable is coupled to an appropriate reservoir. Energy
is dissipated into this reservoir. Consequently, the last
term on the right-hand-side of (2.1) allows one to think
of “quantum dissipation,” albeit via an indirect route:
the quantum system (for example, a degree of freedom
of a system) interacts with a classical one (the rest of
the system, whose behavior may be considered as clas-
sical), which in turn is coupled to the reservoir (the en-
vironment) [see below Eq. (3.50)]. The central idea of
the present work is that of discussing quantum friction
using this indirect route, which allows for a dynamical
description [see below Egs. (3.3) and (3.28)] in which no
quantum rules are violated.

We consider in this work a peculiar space, which shall
be referred to as the “u space,” in order to pursue our
investigations. The set of equations derived from Egs.
(1.3) (for variables belonging to the quantal system) and
from (2.2) (for the classical variables) configure an au-
tonomous set of first-order coupled differential equations
of the form

(2.3)
where 4 is an appropriate, generalized variable (a “vec-
tor” with both classical and quantum components). If
one considers an arbitrary volume element Vs enclosed
by a surface S in the concomitant u space, the dissipative
7 term induces a contraction of Vs [19] [the divergence of
Fis easily seen to be —7 since the matrix G in the set of

equations (1.3) is traceless, on account of the canonical
nature of Egs. (1.2) and (1.3)]. One is thus led to

dVs(t) _
dt

-nVs(t), (2.4)
which entails that our system is a dissipative one [20]. If
the classical Hamiltonian adopts the general appearance

1
Pf +V(s),

H,= —
'" oM

(2.5)
one easily ascertains that the temporal evolution for the
total energy (H) is given by

d(H
d(H) _ _ 2

gt i (2.6)

whose significance is to be appreciated in the light of Eqg.
(2.4).

The set of relationships given by Eq. (1.1) includes the
basic conmutator [, p] = i, directly connected with the
uncertainty principle. This conmutation relation (and
related ones) is trivially conserved for all time (the quan-
tal evolution is the canonical one), so that one is able
to avoid any quantum pitfall [11,14,15]. In the following
section we give two examples of the dissipative machinery
envisioned in writing down the equations of the present
section.

III. EXAMPLES

A. Quantum harmonic oscillator coupled to a
classical harmonic oscillator

The simplest Hamiltonian we can think of is that of
two coupled harmonic oscillators of frequencies wo and
w, respectively,

A 1({1, R 1 .
H= 3 (EPZ + mwga:g + Mpgl + szm(z:l) + YTcl1Tqs

(3.1)

where pZ, 22, and £, are quantum operators and p and
z classical variables. The condition (v2/mM) < wiw?
guarantees elimination of divergent components of the
pertinent solutions [see Eq. (3.9)].

First of all, we introduce the usual dimensionless op-
erators and classical variables (£ = 1)

& = (mwo)/ 22, (3.2a)
. Pq

= —— 3.2b

P= tnwe) 72 (3.2b)

s = (Mw)Y?zy, (3.2¢)
_ Pcl

Ds = M) (3.2d)

A partial Lie algebra [cf. Eq. (1.1)] ensues if we choose
as relevant operators those belonging to the set {1, &, p,
#2, p?, L = &p + p&}, where 1 is the unity operator and



52 SEMICLASSICAL MODEL FOR QUANTUM DISSIPATION 167

L is referred to as the correlation operator. The sets {i,
P, } and {£2, p?, fJ} correspond to the Heisenberg and
the S(1,1) groups, respectively. Applying the generalized
Ehrenfest theorem to the expectation values of the above
mentioned operators we immediately arrive at the system
of coupled differential equations

Uz) _

) — ), (3.33)
%) — (@) + xa), (3.3b)

d(z?y -

S —(hy, (3.3¢)
W0 - (k) + 2x009)), (3.34)
UE) _ a((s?) - (%) — xs(@)), (3.3¢)

where 7 = wot and x = v/(mMwwd)'/? are useful di-
mensionless quantities. Equations (3.3) are the dynam-
ical equations for the quantum relevant variables, which
depend on the classical coordinate s. In particular, for
v = 0 and wo = w(0) exp(—kt) Egs. (3.3) coincide with
those employed in reference to the Kanai Hamiltonian
[8]. For the classical variables we obtain

ds

o= = Qp,, (3.4a)
dp, N
= = ~(x{&) + Qs + 6ps), (3.4b)

where Q = w/wp and § = n/wy. Notice that Egs. (3.3a),
(3.3b), and (3.4) configure an autonomous set of differ-
ential equations by themselves. With Egs. (3.3) and
(3.4) the general form for the temporal evolution of the
expectation values of £ and p can be cast in the form

4
= Z Arexp(ryT),

(3.5a)
k=1

) (1) =) reAxexp(rer), (3.5b)
k=1

while for the classical variables s and p, we obtain

s(r) = —i {Z(rg + l)Akexp('rkT)}, (3.62)

k=1

Ps(7) = {Z e +1) T’kAkeXP(T‘kT)} (3.6b)

In these equations we have employed the abbreviations

Ag = Bi{(&)(0)r&[ri (8 + ri) — Q%] + s(0)x (6 + 74)
—(D)(0)[r (6 + &) + Q%] + pa (0)x02}, (8.7)

where By, = —[4r3 +3r2 +2(22+1)7r, + 6]~ ! and the 4’s
are the roots of the fourth degree equation
P+t (2 + )+ +QQ - x%) =0. (3.8)

In general, the roots of Eq. (3.8) can be cataloged in

the following fashion: (i) two pairs of complex conjugate
roots, (ii) two real roots together with a pair of complex
conjugate ones, and (iii) four real roots. The real part
of the complex conjugate roots does not vanish, except
when x = 0, which is not the case we are interested in
here. Negative real roots and negative real parts of the
complex roots are obtained for

Q> X2 (3.9)
If instead Q < x2, a nondissipative dynamics results from
the evolution equations. Notice that the condition given
by Eq. (3.9) allows for the elimination of divergent com-
ponents from the pertinent solutions, independently of
the presence or lack thereof of a dissipative factor. The
condition (3.9) asserts that the coupling between the sys-
tems must be weak enough for our indirect quantum dis-
sipation mechanism to work.

The analytical solution of Eq. (3.8) (for the general
case) does not provide one with much useful insight. In
order to obtain results amenable to useful interpretation,
we have considered the special instance for which the
particular relationship

Z=4(0%*-1) (3.10)
holds. In this case, we can easily transform Eq. (3.8)
into a quadratic one by introducing the variable

é
= —. 3.11
T+ P ( )
After a careful analysis of the concomitant quadratic
equation (see Appendix A) it is possible to ascertain that
three regimes can be defined. They are illustrated in Fig.
1, where we plot a? vs (6/2)% with

12 T T T T

4 6
(6/2)°

FIG. 1. Domains of the different regimes for the roots of
Eq. (3.8). Region I, two pairs of complex conjugate roots;
region II, a pair of complex conjugate and two real roots;
reglon I1I, four real roots. The full line represents the curve

= [(6 /2) /4 + 1]?, the dashed line represents the curve
= (6/2)® + 1, and the dotted line represents the curve

= (6/2)?. Points A and B are selected in order to draw
Flgs 2 and 3, respectively.
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= 01/2 = _._7__.
N O Y

(3.12)

The domains of each of the above mentioned cases (i),
(ii), and (iii) correspond, respectively, to the regions la-
beled I, II, and III. More details are given in the pertinent
figure caption. From the results of Appendix A one learns
that the quantities (&), (p), s, and ps vanish in the limit
T — 00, except for the particular case Q = x2, for which
the final values (Z)s and sy of, respectively, () and s are
related in the fashion

(&) = —xs5
- %(92(13)(0) — Xx85(0) — x0p, (0)).

Only in the case of the largest [cf. Eq. (3.9)] acceptable
coupling (2 = x?) is the quantum system perturbed in
such a fashion that, in the limit 7 — oo, the two oscil-
lators remain coupled. The final expectation value of &
can be obtained by looking at the value of the classical
coordinate s. The expectation values (22), ($2), and (L)
are to be evaluated according to

(3.13)

(@) () = % [(K11) (0)—(K22)(0)] cos(27)+(K12) (0) sin(27)

+%[(K11)(0) + (K22)(0)]

+3 0> ApAjexpl(ri +r;)7], (3.14a)

k=1 j=1
()(r) = 5(K22) (0) — (Kur) (0)] cos(27)

—(Ki2)(0) sin(27) + 3[(K1)(0) + (Kaz)(0)]

+ Z ApAjrirjexp((ry + 7v5)7], (3.14b)
k=1j=1
(L)(r) = 2[(K12)(0)) cos(2r)
+[(K22)(0) — (K11)(0)] sin(27)
4 4
+ 337 A (ri + rj)exp|(ri + 75)7],
k=1j=1
(3.14¢)
where
(I:<u> = (Az)? = (2°) — (&), (3.15a)
(K22) = (Ap)® = (%) — (), (3.15b)
(Riz) = 24L) — (@)(5), (3.15¢)

are the customary quantum correlations. These expecta-
tion values have, for 7 — oo, an oscillatory behavior, and
the pertinent trajectory in u space configures a closed
orbit (limit cycle) determined by the invariants of the
motion [21-23]

I, = (ku) + (Kzz), (3.16a)
I, = (K11} {(K32) — (K12)2. (3.16b)

More precisely, for 7 — oo the system is constrained to
the curve (in u space) given by the set of six equations

L = (Ku) + (K22), (3.17a)
I = (K11)(Kaz) — (K12)?, (3.17b)
(p) =0, (3.17¢)
Ds = 0, (317d)

and either () = s = 0 (for Q # x?) or (for Q = x?)
(2) = (&) and s = sy, where (Z); and sy are given by
Eq. (3.13) (the fifth and sixth equations).

Heisenberg’s uncertainty principle reads here

(Az)2(8p)*(7) = (K11)(0)(K22)(0) — [(K12)(0)]
+{3[—(K11)(0) + (K22)(0)] sin(27)
+(K12)(0) cos(27)}2. (3.18)

Notice that (Az)%2(Ap)? is & independent. Thus, if
Heisenberg’s uncertainty principle is satisfied for 7 = 0,
one always has [24]

(Az)?(Ap)?(7) > (K11)(0)(K22)(0) — [(K12)(0)]* > i’
(3.19)

so that no difficulties of the type encountered by other
authors [11,14,15] arise.

The expression for the quantal energy, i.e., the mean
value of

A~ 1 R R
H, = Ewo(mz + p?), (3.20)

is deduced from Egs. (3.14a) and (3.14b). One finds
() (r) = %wo{u‘fu)(m + (K2)(0)

+ Z Z AgAj(rer; + 1)exp[(re + rj)T]}.
k=1j=1
(3.21)

It is easy to prove that the relationship (ﬁq) > wo/2 is
satisfied for all time.

If © > x2 the quantal and classical oscillators are seen
to decouple for 7 — oco. We obtain, for the final value

(Hg) s = (Hqg)(0),

(Hp)s = swol(Ki)(0) + (Ka)0)],  (3:22)

which is the minimum value of (H,) (and also of (H)) for
the given initial conditions as represented by the invari-
ants (3.16), so that dissipation clearly ensues, and one
finds the value

AE, = (I:-’q)f - (ﬁq>(0)

1 R .
= —5wo{[(@)(O))* + [(®)(0)]*)} <0 (3.23)
for the energy variation AE,.
If @ = x2, our two systems remain coupled for all 7
and there is no way to differentiate a “quantal” energy
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from a “classical” one. Here the Hamiltonian (3.1) may
be written in the form

.1 .
H = _wo[(& + xs5)% + p* + Qp2].

> (3.24)

Thus, in the limit 7 — oo, for which the classical vari-
able s (and also the potential interaction) does not van-
ish, we obtain a “final” Hamiltonian

Ay = Swol( — (3)7)" + 57, (3.25)
so that the Hamiltonian (3.24) describes a quantum os-
cillator with a time-dependent equilibrium position that
for 7 — oo is equal to (Z);. The quantity (Hy) is the
minimum value of (H) for the given initial conditions
represented by the invariants (3.16) and in this case we
obtain, for the energy variation, an expression similar to
Eq. (3.23), i.e., one has

AE,

(Hy) = (H)(O)
- 5wo{[@OF + (A} <o.

(3.26)

We gather from Eqs. (3.14), (3.18), and (3.22) that
the quantum behavior is determined by the correlations
(3.15) at 7 = 0. In the classical limit, the correlations
vanish and for 7 — oo so does the energy (3.22). The
temporal evolution of the expectation values of the rel-
evant operators [given by Egs. (3.5)] and the quantal
energy are plotted in Figs. 2 and 3 for the specific cases
of the points A (Fig. 2) and B (Fig. 3) of Fig. 1. In Fig.
2 we take a = —1.0025, (§/2)2? = 0.01, and Q = 1.005 and
in Fig. 3 we take a = —2.7, (§/2)2 = 7, and Q = 2.8284.
Frictionless results (§ = 0) are also given and exhibit a
characteristic quasiperiodic behavior. We take A = 1, so
that the pertinent quantities become dimensionless. The
initial conditions are (&) = 1, (p) = 1.5, s = 10, p, = 15,
(%) = 3.5, (p?) = 4.5, and (L) = 1. Other initial val-
ues (like those corresponding to the energies and quantal
correlations) can easily be deduced from the given ones.

B. A two-level system coupled to a classical
harmonic oscillator

The interaction between a spin or a two-level system
with a single mode of the electromagnetic field is a prob-
lem of great interest in several fields, e.g., quantum op-
tics, quantum electronics, and magnetic resonance. We
consider a two-level Hamiltonian coupled to a classical os-
cillator (note that dimensionless quantities are employed)

A it W
H = Eyala; + Exafas + '2"(1’3 +5%)

+vs(ealay + etala,), (3.27)
where we assume E3 > E;. Here v is a coupling constant
with dimension of energy, € is chosen as a dimensionless
parameter, dL a; and &g, a, are the creation and the an-
nihilation operators of a particle in, respectively, levels

1 and 2, s is a classical position variable, and p, is the
concomitant momentum. A partial Lie algebra, given
by Egs. (1.1), follows if we choose as relevant opera-
tors those belonging to the set {01 = &‘;&1, 0, = &;&2,
Os = i(ealay — etala,), Oy = (ealay + falas)}. Ap-
plying the generalized Ehrenfest theorem to the expecta-
tion values of the above mentioned operators we imme-

250 T T T T
200 |-
150

100

0 40 80 120 160 200
T
20 T T T T
(c)
15 -
o
n3
(=) 10 =
i
~N
A
- —
[§=~] L
Vv i
_5 ] ] ] !
0 40 80 120 160 200

T

FIG. 2. (a) Temporal evolution of (%), (b) temporal evolu-
tion of (p), and (c) temporal evolution of quantal energy per
unit we. Full line, temporal evolution for point A of Fig. 1
[the values of the parameters are (§/2)? = 0.01, o = —1.0025,
and © = 1.005]; dotted line, temporal evolution for the same
value of o and 2 but for § = 0. As we take i = 1, these
quantities are dimensionless.
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diately arrive at the system of coupled differential equa-
tions (A =1)

d<§11> = —v5(03), (3.28a)
d((iotz) = v5(03), (3.28b)

<pP>

800
700 (e) _.l

—~100 | 1 | 1
0 40 80 120 160 200

T

FIG. 3. (a) Temporal evolution of (£), (b) temporal evolu-
tion of (p), and (c) temporal evolution of quantal energy per
unit wo. Full line, temporal evolution for point B of Fig. 1
[the values of the parameters are (§/2)® = 7, a« = —2.7, and
Q = 2.8284]; dotted line, temporal evolution for the same
value of a and Q but for § = 0. As we take A = 1 these
quantities are dimensionless.

HO9) — —ale?ys((02) — (O1) +wol0n),  (3.280)
d(0s) R
dr "‘WO(O3>a (328(31)

where wo = (E2 — E1). The expectation values (@1) and
(02) are the populations of levels 1 and 2, respectively,
(O3) represents a “current” vector, and (Oy) is the ex-
pectation value of the quantal factor of the interaction
potential. This system of equations is independent of
the nature of the a, &I, as, and d; operators (bosonic or
fermionic). For the classical variables we obtain (for the
sake of notational simplicity we shall write p instead of
ps), following the usual philosophy [cf. Eq. (2.2b)],

% = wp, (3.29a)
dp A
Frin —(ws +v(04) + 7p). (3.29b)

We remind the reader that the classical and the quan-
tum variables are dimensionless. We take |e| = 1, for the
sake of simplicity. Introducing the population difference
operator

AN = 0, — Oy, (3.30)
whose mean value is the population difference AN and
the dimensionless parameter

2y

=20 3.31
o= (3.31)

we obtain the generalized Bloch-like equations [25-27]
dAN

— == as(0s), (3.32a)
d<dOT3> = —asAN + (04), (3.32b)
d:lOT‘*) — —(0s), (3.32¢)

where 7 = wpt. Further, introducing the dimensionless
parameters

Q=2 §="1 (3.33)

g_j — Op, (3.34a)
dp 1./
P _ _(@s+ Ja(04) + b0). (3.34b)

In the five-dimensional space (AN, (Os),(04),s,p),
the fixed points or equilibrium points (denoted with a
subindex f) of the nonlinear system of coupled differen-
tial equations (3.32) and (3.34) are classified as being of
type A or of type B, according to whether the equilib-
rium value of the classical coordinate s is nonvanishing
or equals zero, respectively. By recourse to the invariant
of the motion I [21]
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I =AN? +(03)? + (04)?, (3.35)

which is the so-called Bloch vector length, these fixed
points can be written, for type A, as

ANy = —2%, (3.36a)
(03)5 =0, (3.36b)
) 02 1/2
(O4)f =+ <I = 425) , (3.36¢)
N _
Sf - —Eﬁ<04>f, (336(1)
ps =0. (3.36€)

The solutions of type A are obtained for 2Q/a? < I'/2,
where I'/2 is the maximum value that AN(7) can at-

tain [cf. Eq. (3.35)] for the given initial values (03)(0),
(O4)(0), and AN(0). Otherwise we have to deal with
type B, given by

ANj = 12 (3.37a)
(03)5 =0, (3.37b)
(O4)5 =0, (3.37¢)

s =0, (3.37d)
ps = 0. (3.37¢)

It can seen that if the particular case £ = 0 (corre-
sponding to a classical free particle) is considered, type
B is the only possible instance. Notice that the posi-
tion of the fixed points depends upon the quantal initial
conditions only through the value of 1.

The stability of the fixed points is determined, in the
usual way, by linearizing (3.32) and (3.34) around a fixed
point and finding the eigenvalues of the associated matrix
(see Appendix B). For type A we obtain either

r=0 (3.38)

or, alternatively,
o3+ (2414 a2s§)7‘2

+8(1 4+ a®s3)r + Q%a’st =0, (3.39)
while for type B we find either

r=0 (3.40)

or, alternatively,
4673 + (% 4+ 1)r? + 0r + Q% + a*QAN; /2 = 0.
(3.41)

In general, the roots of Egs. (3.39) and (3.41) can be
cataloged in the following fashion: (i) two pairs of com-
plex conjugate roots, (ii) two real roots together with a
pair of complex conjugate ones, (iii) four real roots. The
real part of the complex conjugate roots does not vanish.
Negative real roots and negative real parts of the com-
plex roots are obtained for Eq. (3.39), which entails that

the fixed points (3.36) are found to be stable ones (type
A).

Negative real roots and negative real parts of the com-
plex roots are obtained for Eq. (3.41) in the range

20 s
=21 / (3.42)
if
ANg = —IY/2, (3.43)

If these conditions apply, the fixed points (3.37) (type
B) with the minus sign in Eq. (3.37a) are found to be
stable. On other hand, if the opposite sign in (3.37a) is
chosen, complex roots with positive real parts ensue, so
that the fixed points turn out to be unstable ones.

In order to ascertain the attractor character of the sta-
ble fixed points, which is here associated with dissipative
effects, we have proceeded in the customary fashion by
slightly varying both the parameters and the initial con-
ditions. We have, for type A,

Q

ANf = —2¥, (3.443.)
1/2
. 02
(O4)f == (I - 4§) , (3.44b)
o N
85 =~ 55045 (3.44¢)
ps =(0s)s =0, (3.44d)

within the range 0 < 2Q/a? < I'/? (“large” coupling),
and, for type B, :

ANj = —I'/2,
s = <O4>f =0,

(3.45a)
(3.45b)

whenever we have 2Q/a? > /2,
For both types (A and B) the equilibrium values py

and (Oz); are zero. Notice that the final particle flux

is directed from the excited state towards the ground

state. The fixed points depend on the initial conditions

(through I) and also on the parameters o and Q. Notice

the abrupt changes that ensue in (3.44) when
X _pre

= (3.46)

It is worthwhile to point out that the dissipative pa-
rameter § does not influence the nature of the fixed
points. In other words, this nature is only affected by
the interaction between the classical and the quantum
system. The attractors exist because § is not zero, but
their location is independent of the precise value that §
may adopt. ) .

The level populations (Oz) and {(O;) may be written
in the form

(Oa)(7) = %[N + AN(7)], (3.47a)

(0)(r) = 5N = AN(7)), (3.47b)
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where N is the mean value of the total particle num-
ber operator N = O; + O;, which is an invariant of the
motion. Due to the fact that ANy < 0, it is found that

(O2)5 < (01)y,

independently of the initial conditions and the values of
parameters. However,

(3.48)

A(O3) = (O2)5 — (02)(0) (3.49)
can be positive, for type A, if
2Q
o < —AN(0), (3.50)

with AN(0) < 0. This case can be used to describe laser
excitation: the energy necessary for the transition to the
upper level is provided by the classical system, which
may represent a single mode of frequency €2 of an elec-
tromagnetic field described by the conjugate variables s
and p. Part of the energy is dissipated. For type B one
finds A(O2) < 0 for all values of the initial conditions
and pertinent parameters. In this case sy and the poten-
tial interaction vanish for 7 — oo, so that the quantum
system and the classical one become decoupled for large
times. The expression of the variation of the quantum
energy AE,, for

0.5 T T T T T

0.0

~0.5

ANg

-1.0

-1.5

-2.0 — —

—25 L 1 | | |

0.5 T T T T T

H, = E,0, + E;0,, (3.51)
may be written in terms of AN [cf. (3.47)] as
AE, = (ﬁq>f - (fIq>(O)
- -—%wo[ll/z +AN(0)] <0, (3.52)

where (H,)y is the minimum value of (H,) (and also of
(H)) for the given initial conditions represented by the

1.0 T T T T
(a)
0.5 - .

0.0

-0.5

AN

-1.0 —

-1.5 —

-2.0 1 1 | |
100 200 300 400 500

o

1.5 T T T T
(b)

1.0 I ~
0.5 B

-0.5 H

-1.0 ¥ -
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FIG. 4. Behavior of the component corresponding to AN
of the fixed points of the system of equations (3.32) and (3.34)
versus § for a = 21/2 and versus « for £ = 0.5, respectively.

T

FIG. 5. (a) Temporal evolution of AN, (b) temporal evo-
lution of (Os), and (c) temporal evolution of (O4). The values
of the parameters are a = 2, § = 1, and 2 = 0.8. The corre-
sponding fixed point is (—0.4,0,1.6852, —2.1065, 0).
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invariant (3.35).

For type A sy # 0 and then the potential interaction
does not vanish for 7 — oo, leading, as in the previous
example, to the following final Hamiltonian

N 1 . 2 «
Hf = 5(4)0 (AN - %(O4)f04) y (353)

where we have not considered the terms (wga?/8) (64)}

1.0 T T T T
(a)

0.0

-1.0 —

-1.5 —

_2.0 ! I I L
0 30 80 20 120 150

1.5

(b)

0 30 60 90 120 150

2.0

1.8 - -

1.6 itttk sttt AR

(S 14 B
\ |

12 H i

1.0 —

0.8 I | | 1
0 30 60 90 120 150

T

FIG. 6. (a) Temporal evolution of AN, (b) temporal evo-
lution of (O3), and (c) temporal evolution of (O4). The values
of the parameters are a = 2, § = 1, and 2 = 1. The corre-
sponding fixed point is (—0.5,0,1.6583, —1.6583,0).

and wolV /2, which conmute with the relevants operators.
This Hamiltonian describes our coupled system for 7 >
1. One has

AE, = (Hy) — (Hg)(0)

Ll Zrian©)) <o (3.54)
T 2% 20 = :

The sign of AFE, is independent of the constant term

1.5 T T T T

1.0t @ ~

-2.0 1 1 ] I
0 30 60 90 120 150

_3 1 1 I I
0 30 60 20 120 150
T

FIG. 7. (a) Temporal evolution of AN, (b) temporal evo-
lution of (O3), and (c) temporal evolution of (O4). The values
of the parameters are « = 2, § = 1, and Q = 4. The corre-
sponding fixed point is (—1.7321, 0,0, 0, 0).
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referred to above.

The Hamiltonian (3.53), obtained in the limiting case,
coincides with that of Bonilla and Guinea [4] obtained in
the dissipationless case, for Q >> 1 [with the equivalence
(AN, 03,04) < (—04,0y,0;)]. The system of equations
obtained for the Hamiltonian given by (3.53) is formally
the same as that obtained by Bonilla and Guinea [see
Eqgs. (3.9) of Ref. [4]].

However, since this similitude holds only for 7 — oo,
the nature of the fixed points given here by Egs. (3.36a)-
(3.36c) and (3.37a)—(3.37c) differs from that of [4]. For
Bonilla and Guinea Egs. (3.36a)—(3.36c) and (3.37a)-
(3.37c) represent stable centers. For us they represent
attractors. The special case of point (—1,0,0) [corre-
sponding to the (1,0,0) point of Bonilla and Guinea] is
characterized as an unstable fixed point here and by a
saddle point by Bonilla and Guinea.

For the dissipative case of Ref. [4], the fixed points that
are obtained in the limit o2/Q > 1 coincide with ours
in the same limit. They are identified as the (0,0,+1)
points.

Figure 4 depicts the behavior of the component corre-
sponding to AN of the stable fixed points of the system of
equations (3.32) and (3.34) both versus Q (for a = 21/2)
and versus o (for @ = 0.5). The temporal evolution of
the expectation values of AN , 63, and O, is plotted in
Figs. 5, 6 (corresponding to type-A fixed points), and 7
(corresponding to type-B fixed points), fora =2, =1,
and Q@ = 0.8, 1, and 4, respectively. As we have men-
tioned before, the dissipative behavior is enhanced for
B-type fixed points. We take A = 1, so that the perti-
nent quantities become dimensionless. We consider the
bosonic case for N > 3£/ 2, The initial conditions are
AN = —1,(03) = -1, (O4) =1, s =0, and p = —10.

IV. DISCUSSION

Table I summarizes our main results. Two different
types of fixed points A and B are found in the present
considerations. Fixed points of type A minimize (H) (for
the given initial conditions, as represented by the invari-
ants of the pertinent problem). Fixed points of type B

minimize both (H) and (H,). Fixed points B represent a
state of maximum relaxation: (£)y = (f);y = sy =ps =0
and a minimum value of the quantum energy for the case
of the two interacting oscillators. As regards the two-
level system, one encounters for fixed points of type B a
situation with (O3) = (O4) = s = p, = 0 and a maximum
number of particles in the lowest-lying level compatible
with the initial conditions. The two systems, quantum
and classical, interact and then decouple for 7 — oo.
Thus, by looking at the value of the classical variables,
one can ascertain the value of the quantum ones. In a
loose sense, we can regard the classical system as a sort
of “measuring instrument.” Some quantum values are
correlated to the classical ones and one need look only at
the latter.

For type-A fixed points, the quantum and the classical
systems become entangled and cannot be separated at
7 — oo. Even if by looking at the value of the classical
variables one can also learn the value of same quantum
variables, the situation is not as neat as in type B. On
the other hand, these quantum variables do not acquire
“most relaxed” values. Notice that, for the two oscilla-
tors, we do not look at the values of (22)y, ($?)s, and

(L) # because they configure a limit cycle.

The idea that could then be advanced is that, by care-
ful calibration of the parameters governing the quantum-
classical interaction, one could be in a position to “read”
the value of quantum variables just by looking at those
of the classical system. Of course, much additional work
would be needed along such a line of reasoning.

Summing up, we conclude that by consideration of two
coupled systems, a quantum system plus a classical one,
we can mimic the dissipating behavior of the quantum
system, without recourse to any quantization procedure.
The basic commutator [&,af] =1 (or [£,5] = ih), from
which the rest of commutation relationships are derived,
is satisfied for all ¢, due to the fact that the dissipating
character of the system is introduced via the classical part
of the Hamiltonian. For this reason, quantum character-
istics are not altered. The quantum dynamical equations
reflect dissipation through the s variable, whose tempo-
ral evolution is governed by Egs. (2.2). Fixed points are
found, which allows one to speculate on the possibility
of using them to determine possible uses of the classical
system as a measuring instrument.

TABLE I. Fixed points corresponding to the two examples discussed in this work. The quantity

I is given by Eq. (3.35) while E = (E; + E2)/2wo.

Hamiltonian (dimensionless) Condition Stable fixed points in u space ® Type
N (<i>f)<ﬁ>f’3f)pf)b
%:%(ﬁ2+5;2)+9_:(p§+32) Q:X2 (—xs5,0,55,0)° A (sy #0)
+xs Q> (0,0,0,0) B (sf =0)
N (ANf’<O3>fa<é4>’sf1pf)
B _IAN+EN+Lp2+5%) Q< Lla® [-22,0,-225; +2 (T 122)1/2 0] A (s; #0)
+asO, Q> L2 (~1'/2,0,0,0) B (s; =0)

2 Attractors.

PFixed points of the set of equations (3.3a), (3.3b), and (3.4).

°The quantity sy is given by Eq. (3.13).
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APPENDIX A: QUARTIC EQUATION

Introducing Eq. (3.11) into Eq. (3.8), we obtain
vi+pr?+g=0 (A1)

if the relationship (3.10) holds, where p and r are given

by
1 5\
/s 2 2
_ (1[0 2
q= 4(2> +1 a“. (A2b)
The roots of Eq. (A1) adopt the forms
vy = (Z+)1/2, vy = —(Z+)1/2, (A3a)
U3 = (ZW)I/Za Vg = _(Z-)l/za (A3b)
where
7+ = —g + A2, (Ada)
Z-=— (’—’ + A1/2> (Adb)
2 b
with
A= () a=-(3) +e (3)
“\2) 7177 \2 '
Looking at Eqs. (A3) we see that if
2
a? < (g) , (A6)

which implies A < 0, two pairs of complex conjugate
roots are obtained. If instead

2
a? > (é)
2

(A > 0), two different cases ensue. (a) If ¢ < 0 (which is
only possible if A > 0), i.e.,

1/6\2 :
2 — p—
a>{4(2) —l—l] R

two pure imaginary and two real roots are obtained. (b)
If ¢ >0, i.e.,

(A7)

(A8)

, (A9)

with p > 0, i.e.,

5\ 2
(5) < 4, (A10)
two pairs of pure imaginary complex conjugate roots are
obtained.

Finally, if p <0, i.e.,

2
(é) >4,
2 2

four real roots are obtained. In the particular case ¢ = 0,
we have v; = v = 0. If ¢ = 0 and p = 0 we obtain
vy = vg = vz = v4 = 0. Equations (3.8) and (A1) lead to
equivalent roots, although shifted in /4,

(A11)

i =v; 7 1i=1,2,...,4 (A12)
These results and the condition [Eq. (3.9)]
5\ 2
a? < (5) +1 (A13)

are illustrated in Fig. 1.

APPENDIX B: LINEARIZATION PROCEDURE

The stability of the fixed points is determined by lin-
earizing (3.32) and (3.34) around the fixed points, i.e.,
we substitute

(AN, (O3>1 (é4>v s,p) = (ANf + €AN, <O3>f + €3, <O4>f

+54a3f +6.9,pf +6P) (Bl)

into these equations, which leads, for both types A and
B, to the system of equations

d
= e, (B2a)
%6;3 = —a(sgean + ANjge,) + €4, (B2b)
d

_d%‘l = —€s3, (B2¢)

de,
2y = Sep (B2d)
%fg = —(Qe, + Faes + bep). (B2e)

-

For type A the eigenvalues of the concomitant secular
matrix are the roots of Egs. (3.38) and (3.39), while for
type B they are the roots of Eqs. (3.40) and (3.41). For
type A one obtains either negative real roots or complex
real roots with negative real parts as the roots of Eq.
(3.39). The solutions of Egs. (B2) evolve, for 7 — oo,
towards values consistent with a root r = 0 [cf. Egq.
(3.38),
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€EAN; = €3, = €pf = 0, (B3a)

a
€s; = -—ﬁe‘;,. (B3b)

The value of €, in Eq. (B3b) is determined using the
invariant of the motion I(¢) corresponding to Egs. (B2)

_ 19
RARETXY B4
where I(€) is given by
I(e) = 2[ANean(0) + (Oa) yea(0)). (B5)

Therefore, trajectories starting near the fixed points
(3.36) move toward neighboring fixed points (denoted
with a superindex n), given by

AN} = ANy, (B6a)

(04)7 = (O4)5 + 2<10Ei))f’ (B6b)
n_ o I(e)

st =s5— m(o}),’ (B6c)

Pt =Py, (B6d)

(03)F = (Os) ;. (Bée)

Negative real roots and negative real parts of the com-
plex roots are obtained for Eq. (3.41) if, in Eq. (3.37a),

ANy = —J/2, (B7)

and the relation (3.42) is satisfied. As a consequence,
the solutions of Egs. (B2) evolve, for 7 — oo, to values
corresponding to the eigenvalue zero [Eq. (3.40)], as in
type A. These constants [the fixed points of Egs. (B2)]

are determined by Egs. (B2) and (B5) and one finds

I(c)
€EAN; — , (B8a)
! 2A Ny
€3, = €4; = €5, = €p, = 0, (B8b)
which determine the fixed points
n_ I(e)

ANY —ANf+2ANf, (B9a)
<O4)? = (Oa)s, (B9b)
st = sy, (B9c)

P¥ = ps, (B9d)
(03)F = (03)5. (B9e)

In general, in both cases, the trajectories starting in
the vicinity of the fixed points move toward neighboring
fixed points. The concomitant shift, as it is easy to see [cf.
Egs. (B6) and (B9)], is proportional to the perturbation.
In particular, if the perturbation does not modify the
invariant I, i.e.,

[ANs + ean(0)]? + [(O3) 5 + €3(0)]?

+[(Oa) 5 + €a(0))2 ~ I + I(e) = I, (B10)

so that I(e) = 0 (we have neglected powers of € higher
than the linear one; note that in both cases (O3)s van-
ishes), the trajectories lead back to the original fixed
points. Therefore, if we start in the neighborhood of
the fixed points, we either return to them or remain in
their vicinity. The fixed points are stable ones [26]. On
the other hand, if the opposite sign in (3.37a) is chosen,
complex roots with positive real parts ensue, so that the
fixed points turn out to be unstable ones.
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